New Construction of Graphs with High Chromatic Number and Small Clique Number
نویسندگان
چکیده
منابع مشابه
Fractional chromatic number and circular chromatic number for distance graphs with large clique size
Let Z be the set of all integers and M a set of positive integers. The distance graph G(Z,M) generated by M is the graph with vertex set Z and in which i and j are adjacent whenever |i − j| ∈ M . Supported in part by the National Science Foundation under grant DMS 9805945. Supported in part by the National Science Council, R. O. C., under grant NSC892115-M-110-012.
متن کاملThe locating-chromatic number for Halin graphs
Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...
متن کاملDense graphs with small clique number
We consider the structure of Kr-free graphs with large minimum degree, and show that such graphs with minimum degree δ > (2r − 5)n/(2r − 3) are homomorphic to the join Kr−3 ∨ H where H is a triangle-free graph. In particular this allows us to generalize results from triangle-free graphs and show that Kr-free graphs with such minimum degree have chromatic number at most r+ 1. We also consider th...
متن کاملGraphs with Small Generalized Chromatic Number
Let G = (V; E) denote a nite simple undirected connected graph of order n = jV j and diameter D. For any integer k 2 1; D], a proper k-colouring of G is a labelling of the vertices V such that no two distinct vertices at distance k or less have the same label. We let k (G), the k-chromatic number of G, denote the least number of labels required to achieve a proper k-colouring of G. In this pape...
متن کاملPacking chromatic number versus chromatic and clique number
The packing chromatic number χρ(G) of a graphG is the smallest integer k such that the vertex set of G can be partitioned into sets Vi, i ∈ [k], where each Vi is an i-packing. In this paper, we investigate for a given triple (a, b, c) of positive integers whether there exists a graph G such that ω(G) = a, χ(G) = b, and χρ(G) = c. If so, we say that (a, b, c) is realizable. It is proved that b =...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete & Computational Geometry
سال: 2017
ISSN: 0179-5376,1432-0444
DOI: 10.1007/s00454-017-9934-3